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ABSTRACT HIV-1 infection of resting CD4 T cells plays a crucial and numerically
dominant role during virus transmission at mucosal sites and during subsequent
acute replication and T cell depletion. Resveratrol and pterostilbene are plant stil-
benoids associated with several health-promoting benefits. Resveratrol has been
shown to inhibit the replication of several viruses, including herpes simplex viruses 1
and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus.
Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does
synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse
transcription. Here, we demonstrate that resveratrol and pterostilbene completely block
HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse
transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides
and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxy-
nucleoside triphosphate (dNTP) levels. These findings are consistent with the reported
ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells.
This study supports the potential use of resveratrol, pterostilbene, or related compounds
as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations.
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The stilbenoids resveratrol (RES) and pterostilbene (PTE) function as plant phytoa-
lexins, i.e., defensive compounds generated in response to parasitic attack. Res-

veratrol is found in grape skins, small berries, peanuts, and some nuts and has been
extensively studied as an active ingredient of red wine, contributing to the health
benefits associated with the French paradox and other potential life-extending prop-
erties, including anti-inflammatory, anticancer, and antidiabetes activities (1). Pterostil-
bene is a natural dimethylated analog of resveratrol also found in grape skins, berries,
peanuts, and almonds (2). Pterostilbene has anti-inflammatory activity (3, 4), is more
lipophilic than resveratrol, and has greater stability in vitro and in vivo (5–8).

Resveratrol inhibits the replication of several viruses, including herpes simplex
viruses (HSVs) 1 and 2, varicella-zoster virus, papillomaviruses, and influenza virus
(9–12). Topical application of resveratrol has been found to inhibit HSV vaginal trans-
mission in mice, suggesting that it might be useful as a topical microbicide (13). Alone,
resveratrol does not inhibit wild-type (WT) human immunodeficiency virus type 1
(HIV-1) replication in activated T cells or in transformed T cell lines (14, 15), but it does
potentiate inhibition of reverse transcription by nucleoside analog reverse transcriptase
(RT) inhibitors (NRTIs), including tenofovir (TFV), didanosine, zidovudine (AZT), and
emtricitabine (FTC) (14, 16). Resveratrol alone does, however, inhibit reverse transcrip-
tion in NRTI-resistant RT mutants in activated T cells, such as mutants with the
frequently occurring M184V mutation that sensitizes RT to reduced deoxynucleoside
triphosphate (dNTP) levels (17), and TFV-resistant mutants in T cells and macrophages
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(18). Whereas resveratrol was observed to have no anti-HIV-1 effect in a transformed
fibroblastic cell line (293T), pterostilbene at 10 �M showed 50% inhibition (19).

Resveratrol is an inhibitor of cellular ribonucleotide reductase (RNR), which converts
ribonucleotides to deoxyribonucleotides for DNA synthesis during cell proliferation and
for DNA repair (20, 21). A tyrosyl radical in the R2 subunit of RNR required for this
conversion is destroyed by the radical-scavenging activity of resveratrol (20). Treatment
of cells with resveratrol reduces cellular dNTP levels, particularly those of dATP and
dGTP (22). The anti-HIV activities of resveratrol have been attributed to its inhibition of
RNR, resulting in a reduction in dNTP levels, which enhances the competition of
nucleoside analog drugs for cellular dNTPs (14, 17, 18, 23, 24). The failure of resveratrol
alone to inhibit HIV-1 infection of activated and transformed T cells is thought to be the
result of the inherently abundant levels of dNTPs in these cells, such that resveratrol
cannot lower dNTP levels sufficiently to directly inhibit the reverse transcriptase of
HIV-1 isolates with WT reverse transcriptase. Consistent with this idea, resveratrol alone
has been found to partially inhibit HIV-1 infection of differentiated macrophages, a cell
type with dNTP levels severalfold lower than those in activated T cells (14). Resveratrol
has also been observed to inhibit Tat-dependent transactivation of the HIV-1 promoter
in HeLa cells via activation of the Sirtuin 1 (SIRT1) deacetylase (25).

Although HIV-1 replicates optimally in activated CD4 T cells and transformed cell
lines, in vivo, the cells most commonly infected following mucosal transmission of HIV
and the related simian immunodeficiency virus (SIV) are T cells with a resting, nonpro-
liferating phenotype (26–29). In situ analyses following vaginal infection of macaques
found that �80% of the initial targets of SIV infection were intraepithelial or endocer-
vical lamina propria resting CD4� T cells (26, 27, 29) and Th17 cells (30). Vaginal,
ectocervical, and endocervical tissue explant studies observed resting CD4 T cell
infection to be confined to the mucosal stroma (31–35). In addition, infection of resting
CD4 T cells contributes substantially to viral replication and immune depletion (27, 29,
36–39) and to formation of the latent reservoir (40, 41). Some studies of SIV infection
in rhesus macaques have observed infection of non-CD3 cells as a minority population
(30) or in substantial proportions, including Langerhans cells (42, 43) and dendritic cells
(44).

Resting T cells are less permissive to productive HIV-1 infection, owing to several
blocks, including the lack of transcription factors and the presence of restriction factors,
such as SAMHD1 (45, 46); nevertheless, both in vivo and in vitro abundant productive
infection in resting CD4 T cells is observed (29, 39, 47–49). Importantly, resting T cells
contain dNTPs at levels 2 orders of magnitude lower than those in activated T cells (50),
which slows the kinetics of reverse transcription (51) but does not prevent its eventual
completion, resulting in productive infection and virus spread (49, 52). We thus
revisited resveratrol and examined pterostilbene in the context of resting T cells.

RESULTS
Resveratrol inhibits HIV-1 infection of resting CD4 T cells but not activated CD4

T cells or cells of the immortalized CD4 T cell line Jurkat. First, we sought to confirm
previous reports regarding the failure to observe an anti-HIV effect of resveratrol in
activated T cells. For this we employed an envelope-defective green fluorescent protein
(GFP) reporter virus that was pseudotyped with the WT HIV-1 envelope. This virus can
enter CD4� cells but does not spread owing to the env gene defect that prevents de
novo envelope protein expression in infected cells (53). Consistent with prior reports,
resveratrol at concentrations up to 30 �M did not reduce HIV-1 infection in activated
CD4 T cells or in cells of the transformed T cell line Jurkat (Fig. 1, top and middle rows)
(14, 15). In fact, higher doses of resveratrol appeared to increase the percentage of
GFP-positive (GFP�) cells in Jurkat and activated T cells. We hypothesized this apparent
increase to be an artifact generated by resveratrol inhibiting the proliferation of
uninfected and otherwise GFP-negative cells, whereas the proliferation of infected
GFP-positive cells would already have been inhibited by HIV Vpr (54, 55). Resveratrol is
known to inhibit lymphocyte proliferation (56). Confirming this idea, the dose-
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dependent increase in the percentage of GFP-positive cells correlated with a reduction
in GFP-negative cell proliferation (see Fig. S1 in the supplemental material).

Next, we tested the effects of resveratrol in peripheral blood resting CD4 T cells. To
improve the survival of the cells following infection, thus increasing the overall infec-
tion frequency (49), we treated the cells with interleukin-4 (IL-4), which, our prior
studies indicated, maintains the resting phenotype, including small cell size, a lack of
proliferation, and low levels of to no expression of activation markers, including CD25,
CD38, CD62L, and CD69 (48, 57, 58). In contrast to the inability of resveratrol to inhibit
productive HIV-1 infection of activated and transformed T cells, resveratrol completely
prevented productive infection of resting CD4 T cells in a dose-dependent manner (Fig.
1, bottom row). Greater than 99% inhibition was found at 5 �M, and complete
inhibition was achieved at �10 �M. This finding stands in contrast to that of a previous
study which concluded that resveratrol by itself does not inhibit HIV-1 infection in
resting T lymphocytes (14). These experiments were performed utilizing an HIV-1 strain
that enters cells via interaction with CD4 and the coreceptor CXCR4 (59), which
provides infection of most cell types substantially more efficient than that by strains
utilizing CCR5 as a coreceptor. In vivo, however, most circulating strains utilize CCR5. We
tested RES and PTE inhibition of infection of resting CD4 T cells via CCR5, finding 99.5%
to 100% inhibition (data not shown), consistent with these compounds acting at a
replication stage after virus entry.

Anti-HIV activity of related stilbenoids in resting CD4 T cells. We next tested the
anti-HIV-1 activity in resting T cells of four stilbenoids with structures similar to the
structure of resveratrol: pterostilbene (PTE) (2); polydatin (POLY), also called piceid, a
glucoside of resveratrol first isolated from the Chinese medicinal plant Polygonum
cuspidatum (60); piceatannol (PIC), an analog of resveratrol with an additional hydroxyl
group which, like resveratrol, is also found in red wine and grapes (61); and isorha-
pontigenin (ISOR), a metabolite of piceatannol (62) (Fig. 2A). Polydatin and isorhapon-
tigenin completely inhibited productive infection at 30 �M, while piceatannol was
somewhat less potent at equivalent concentrations, and its effectiveness also declined
at concentrations above 10 �M (Fig. 2B and C). Pterostilbene, on the other hand, was
as effective as resveratrol at all concentrations. None of these four stilbenoids inhibited
infection of activated CD4 T cells or Jurkat cells at the doses tested (data not shown).
No toxicity was observed at the concentrations used in the following studies (�15 �M);
in fact, all compounds conferred a slight increase in cell viability at these concentrations
(Fig. S2). We chose pterostilbene and resveratrol for further study.

In this study, we treated the purified resting CD4 T cells with IL-4, which increases
the yield of infected cells without inducing T cell activation (48, 63). Apart from IL-4,

FIG 1 Resveratrol inhibits single-round HIV-1 infection of resting CD4 T cells but not infection of activated CD4 T cells or Jurkat T cells.
Cells of the Jurkat T cell line, primary CD4 T cells activated by PHA-L and IL-2, and resting CD4 T cells treated with IL-4 were infected with
the HIV-1 GFP reporter virus G1ESI (115). Resveratrol was added immediately after infection. Flow cytometric analysis was performed at
day 2 p.i. for activated CD4 T cells and Jurkat T cells and at day 5 p.i. for resting CD4 T cells. Data are representative of those from 3
independent experiments. The numbers in blue represent the percentage of GFP� cells.
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other cytokines, such as IL-6 and IL-7, have been shown to support the infection of
resting CD4 T cells in vitro (48, 49, 63, 64). We have previously demonstrated that
common gamma-chain cytokines, such as IL-4 and IL-7, increase HIV-1 infection of
resting CD4 T cells by preventing the apoptosis that infection triggers rather than
increasing the activation status of the cells (48, 57, 58) or the efficiency of infection itself
(49). IL-4 enhances HIV-1 infection in lymphoid tissues and thus likely contributes to
HIV-1 replication of resting T cells in vivo (65). We next examined the possibility that the
antiviral effects of resveratrol and pterostilbene are influenced by the choice of cytokine
used to enhance infection. We tested the resveratrol and pterostilbene dose-responses
in the presence of IL-4, IL-6, IL-7, or no cytokine (Fig. 3). The various cytokines did not
influence resveratrol’s HIV-1 inhibition, whereas at the lowest dose of pterostilbene
tested (1 �M), there was a statistically significant decrease in efficacy in the presence
of each cytokine compared with that with no cytokine (IL-4 reduced the percent
inhibition by 13% [P � 0.014], IL-6 reduced the percent inhibition by 9.2% [P � 0.03],
IL-7 reduced the percent inhibition by 25.6% [P � 0.005]).
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FIG 2 Inhibition of resting T cell infection by five stilbenoids. (A) Molecular structures of the stilbenoids utilized in this study. (B) IL-4-treated resting CD4 T cells
were infected with G1ESI and cultured in the presence of the indicated concentrations of resveratrol (RES), pterostilbene (PTE), polydatin (POLY), piceatannol
(PIC), and isorhapontigenin (ISOR). Flow cytometric analysis was performed on day 5 p.i. Percent inhibition was calculated by dividing the number of GFP� cells
for each treatment by the number of GFP� cells in the DMSO control treatment. (C) Mean IC50 calculated using nonlinear regression curve fit of the
dose-response curve in GraphPad Prism software (version 5). (B and C) Data represent the means and standard deviations from 3 independent experiments
using cells from different donors.
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FIG 3 Influence of cytokine treatment on the inhibition of HIV-1 infection by resveratrol and pterostil-
bene. Resveratrol (A) or pterostilbene (B) was added at the indicated concentrations immediately after
infection of cells that had been incubated with no cytokine, IL-4, IL-6, or IL-7. Flow cytometry was
performed on day 5 p.i. Percent inhibition was calculated by dividing the number of GFP� cells for each
treatment by the number of GFP� cells in the DMSO control using the appropriate cytokine. There were
no statistically significant differences in percent inhibition at each dose of stilbenoid with the exception
of 1 �M pterostilbene. *, IL-4 reduced the percent inhibition by 13% (P � 0.014), IL-6 reduced the percent
inhibition by 9.2% (P � 0.03), and IL-7 reduced the percent inhibition by 25.6% (P � 0.005). P values were
calculated by unpaired Student’s two-tailed t test. Data represent the means and standard deviations
from 3 independent experiments using cells from different donors.
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Next, we investigated whether the effectiveness of resveratrol and pterostilbene is
influenced by the amount of virus infecting the cells. We infected resting CD4 T cells
with 3 different doses of HIV-1 spanning a 16-fold difference in virus input, resulting in
1% to 33% productive infection in untreated control cells. The abilities of resveratrol
and pterostilbene to inhibit infection were not altered by the dose of virus (Fig. 4).

Resveratrol and pterostilbene inhibit HIV-1 reverse transcription in resting
CD4 T cells. The anti-HIV properties of resveratrol have been attributed to its inhibition
of ribonucleotide reductase and the resulting reduction in dNTP levels (14, 18, 20, 22,
23). The reduced dNTP levels are thought to allow nucleoside analog drugs to more
effectively compete with endogenous nucleotides for incorporation into the nascent
viral DNA during reverse transcription. We presumed that the already low dNTP levels
in resting T cells allowed resveratrol and pterostilbene to reduce dNTP levels below the
ability of reverse transcriptase to function. To test this notion, we examined the ability
of HIV-1 to generate reverse transcripts in resting T cells in the presence of resveratrol
or pterostilbene. We measured by quantitative PCR (qPCR) the amount of full-length
HIV-1 DNA, the amount of integrated proviral DNA, and the amount of 2-LTR circles, an
abortive component of the total full-length viral DNA that nevertheless may contribute
to HIV-1 replication in resting T cells (48, 57). Treatment of infected cells with either
stilbenoid resulted in a dramatic, dose-dependent reduction in all three types of HIV-1
DNA: compared to the results obtained with the dimethyl sulfoxide (DMSO)-treated
control, 5 and 15 �M resveratrol reduced the amount of total full-length HIV DNA per
cell by 85% (P � 0.0035) and 98% (P � 0.0032), respectively, whereas pterostilbene at
5 �M and 15 �M lowered the amount of full-length HIV-1 DNA per cell by 93% (P �

0.0034) and 98% (P � 0.0032), respectively (Fig. 5B); both resveratrol and pterostilbene
at 5 �M reduced the number of 2-LTR circles by 97% (P � 0.0168 and 0.0174,
respectively), and at a higher dose, both stilbenoids reduced the number of 2-LTR
circles to below the detection limit of 1 copy per 1,000 cells; resveratrol and pterostil-
bene at concentrations of 5 �M and above were able to reduce the integrated provirus
level to below the detection limit of our Alu PCR of 1 copy per 300 cells. The PCR results
strongly correlated with the reduction in the number of GFP-expressing cells (Fig. 5A
and B), which supports the concept that resveratrol and pterostilbene inhibited HIV-1
at the reverse transcription step.

To further examine resveratrol and pterostilbene targeting of reverse transcription,
we added each drug either immediately after infection, as in the assay whose results are
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IL-4-treated resting CD4 T cells were infected with the indicated amounts of HIV-1 (G1ESI) and treated
with different doses of either resveratrol (RES) (A) or pterostilbene (PTE) (B). Cells were analyzed by flow
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significant differences between the IC50 or IC90 of RES and PTE with different doses of virus, as
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presented in Fig. 1 to 5B, or 1 or 2 days after infection. Virus entry was complete prior
to the day 1 dosing, while reverse transcription in resting CD4 T cells requires �2 days
for completion (49), significantly slower than that in activated T cells and cell lines. We
analyzed viral DNA 3 days after infection and GFP expression 5 days after infection (Fig.
5C). When added immediately after infection, each drug blocked the appearance of
GFP� cells by �99% and the production of full-length reverse transcripts by 94% (P �

0.001 versus DMSO-treated control cells) and 95% (P � 0.002), respectively, similar to
the findings presented in Fig. 5A and B. However, when the stilbenes were added 1 day
after infection, during which reverse transcription was partially completed or com-
pleted for only a subset of viruses, 70% inhibition of reverse transcription by resveratrol
(P � 0.049) and 62.5% inhibition of reverse transcription by pterostilbene (P � 0.057)
were observed. Each drug was ineffective at reducing HIV-1 DNA levels when it was
added 2 days after infection, corresponding to the prior completion of reverse tran-

FIG 5 Resveratrol and pterostilbene inhibit reverse transcription in resting CD4 T cells. IL-4-treated CD4 T cells were infected with HIV-1
(G1ESI) and treated with the indicated concentrations of RES or PTE. (A) Flow cytometry dot plots of treated and untreated cells at day
5 p.i. The numbers in blue represent the percentage of GFP� cells. (B) Cell samples collected on day 3 p.i. were analyzed by qPCR for total
full-length, 2-LTR, and integrated HIV DNA. The means from triplicate PCRs and standard deviations are shown. Data are representative
of those from 3 independent experiments using cells from different donors for total full-length and 2-LTR DNA and 2 independent
experiments for integrated DNA. ND, none detected. The lower limit of detection was 1 copy of total full-length DNA per 1,000 cells and
1 copy of integrated DNA per 300 cells. **, P � 0.05; ***, P � 0.01. P values were determined by unpaired Student’s two-tailed t test and
were not available when DNA was undetectable. (C) RES and PTE halt reverse transcription following virus entry into cells at any time prior
to completion. IL-4-treated CD4 T cells were infected with HIV-1, washed to remove free virus as in all experiments whose results have
been presented, and treated with 5 �M RES or PTE immediately (day 0 p.i.) or at 1 or 2 days after infection. Cell samples collected on day
3 p.i. were analyzed by qPCR for late (full-length) HIV-1 DNA. Percent GFP� cells for each treatment at day 5 p.i. was normalized against
the percent GFP� of the DMSO control. Means and standard deviations from 3 different independent experiments with cells from different
donors are shown.
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scription. Interestingly, there was a 2-fold reduction in the number of GFP� cells when
the drugs were applied at 2 days postinfection (p.i.), and also a greater reduction in the
number of GFP� cells than the amount of viral DNA when they were applied at 1 day
postinfection. This suggests an additional mechanism by which each drug can suppress
HIV-1 replication. A prior study observed resveratrol inhibition of HIV-1 Tat-mediated
transactivation of the viral promoter in transfected HeLa fibroblastic cells (25). Further
studies will be required to determine if a similar mechanism operates in primary resting
CD4 T cells infected with HIV-1. Alternatively, dNTP levels influence viral mutation rates
(66), so it is possible that resveratrol and pterostilbene increase the generation of
defective genomes incapable of proper gene expression.

Resveratrol and pterostilbene inhibition of HIV-1 infection in resting CD4 T
cells is reversed by exogenous dN or Vpx. We sought to confirm that reduced dNTP
levels were primarily responsible for the antiviral effects of resveratrol and pterostil-
bene. Addition of exogenous deoxynucleosides (dN) to resting T cells is known to
increase the kinetics of reverse transcription and fosters productive infection (51, 67), so
we applied exogenous dN to the cells at the time of infection to restore dNTP levels
within the cells. Nucleosides reversed 91.6% and 86.2% of the inhibition by 5 �M
resveratrol and pterostilbene, respectively (Fig. 6A). In another test, we delivered the
SIVmac239 Vpx protein within virus-like particles (VLPs) 1 day prior to infection in order
to increase dNTP levels. Vpx is a virion-incorporated protein found in both HIV-2 and
several SIV strains that degrades the cellular protein SAMHD1, which would otherwise
lower dNTP levels in resting T cells and dendritic cells (68). By countering SAMHD1
activity, Vpx enhances HIV and SIV replication in these cell types. Vpx reversed 65% and
69% of the 15 �M resveratrol and pterostilbene inhibition of infection, respectively (Fig.
6A and B). Importantly, the combination of Vpx and dN application completely reversed
resveratrol and pterostilbene inhibition at all dN concentrations, including those that
alone were only weakly effective (Fig. 6C).

The generation of the HIV-1 proviral DNA from the virion-associated RNA template
proceeds in an ordered process, with early short reverse transcripts appearing rapidly
after infection or even prior to infection within virions. Thus, we anticipated that these
early products would be less inhibited than longer RT products. Virus expression is
possible only from completed reverse transcripts; thus, the expectation was that dN
would restore these to normal levels in RES- or PTE-treated cells. We analyzed both
early and late reverse transcripts by qPCR of cells treated with 5 �M resveratrol or
pterostilbene in the presence or absence of dN. As expected, resveratrol and pteros-
tilbene inhibited late transcripts (94% [P � 0.0002] and 87.5% [P � 0.0002] reductions,
respectively) substantially more than early reverse transcripts (48% [P � 0.003] and
41.7% [P � 0.004] reductions, respectively) (Fig. 6E). The addition of dN restored GFP
expression (Fig. 6D) and early and late transcript production in resveratrol- and
pterostilbene-treated cells to at least the levels in untreated cells, consistent with the
reduction in the levels of the intracellular dNTP stores by these drugs being the primary
mechanism by which they inhibit HIV-1 infection of resting CD4 T cells. Intriguingly,
deoxynucleosides enhanced HIV-1 expression, as measured by the number of GFP�

cells, by more than 60% (compared with that for DMSO-treated cells) without increas-
ing the amount of full-length HIV-1 DNA. It is possible that, as noted above regarding
the relationship between dNTP levels and mutation rates (66), addition of dN to cells
reduces the generation of defective genomes. Testing of this concept awaits further
study.

Resveratrol and pterostilbene do not increase proviral latency. A prior study
found that virus outgrowth could be achieved when a single 5 �M dose of resveratrol
is applied to resting T cells at the time of infection and the cells are then washed and
activated with phytohemagglutinin-L (PHA-L) for a further 8 days (14). We sought to
determine if the virus outgrowth under these conditions resulted from activation of
latent viruses or from de novo spread through the activated cells of any small amount
of viruses that might have escaped the initial resveratrol treatment. To this end, we first

Stilbenoid Inhibition of HIV-1 Replication Antimicrobial Agents and Chemotherapy

September 2017 Volume 61 Issue 9 e00408-17 aac.asm.org 7

http://aac.asm.org


N
or

m
al

iz
ed

 %
 E

xp
re

ss
io

n

0

20

40

60

80

100

dN (µM)

0 1.9 7.5 30 120

RES 5 µM
PTE 5 µM

0

20

40

60

80

100

Resveratrol (µM)

0 5 10 15

Vpx-
Vpx+

0

20

40

60

80

100

Pterostilbene (µM)

0 5 10 15

N
or

m
al

iz
ed

 %
 E

xp
re

ss
io

n

BA

15

GFP

eF
lu

or
67

0

0.06 0.23 24.4 20 19.1

DMSO RES 5 µM PTE 5 µM DMSO + dN RES + dN PTE + dND

E

dN 30 µM

*** ***

*** ***

Ø

C
op

ie
s/

ce
ll

0.0

0.5

1.0

1.5

2.0

2.5

DMSO RES PTE DMSO RES PTE

Early RT
Late RT

C

FIG 6 Exogenous deoxynucleosides (dN) and Vpx reverse resveratrol and pterostilbene inhibition of HIV-1 infection and
reverse transcription in resting CD4 T cells. (A) IL-4-treated CD4 T cells were infected with HIV-1 and treated with resveratrol
or pterostilbene plus the indicated dose of dN. P was �0.05 for 1.9 �M dN and P was �0.01 for 7.5 to 120 �M dN compared
with the results for DMSO-treated control cells by unpaired Student’s two-tailed t test. (B) Delivery of SIV Vpx protein in
virus-like particles (VLPs) to IL-4-treated cells was performed 1 day before infection with HIV-1. Control cells received VLPs
lacking Vpx. P was �0.01 for Vpx-positve (Vpx�) versus Vpx-negative (Vpx�) conditions by unpaired Student’s two-tailed
t test. (C) The combination of dN and Vpx completely reversed both resveratrol and pterostilbene inhibition of infection
at each concentration of dN (the results were not statistically significantly different [P � 0.05] from those for no RES or PTE
by unpaired Student’s two-tailed t test). Cells were analyzed by flow cytometry at day 5 p.i. IL-4-treated CD4 T cells were
infected with HIV-1 and treated with the indicated concentrations of RES or PTE without dN at 30 �M. (A to C) Data
represent the means and standard deviations from three independent experiments using cells from different donors. (D)
Flow cytometry of a separate experiment demonstrating the restoration of reverse transcription by dN. The numbers in
blue represent the percentage of GFP� cells. (E) Cells from the assay whose results are presented in panel D were collected
on day 3 p.i. and were analyzed by qPCR for early and late (full-length) RT transcripts. Means from triplicate PCRs and
standard deviations are shown. Data are representative of those from 2 independent experiments using cells from different
donors. ***, P � 0.01 versus DMSO-treated control cells by unpaired Student’s two-tailed t test.

Chan et al. Antimicrobial Agents and Chemotherapy

September 2017 Volume 61 Issue 9 e00408-17 aac.asm.org 8

http://aac.asm.org


repeated the conditions of that study, testing pterostilbene under these conditions as
well (Fig. 7A). Similar to the findings of the prior study (14), there was an increase in
productive infection over the 8 days after T cell activation that was nevertheless greatly
diminished and delayed compared with the large and rapid burst of virus replication
from cells not treated with a stilbenoid (Fig. 7B and S3A). Increasing the dose to 15 �M
resveratrol or pterostilbene at the time of initial infection further decreased the
subsequent expansion of the virus.

In order to test whether the appearance of new GFP� cells resulted from virus
spread rather than activation of latent genomes, we prevented de novo virus transmis-
sion with the protease inhibitor indinavir and the nonnucleoside reverse transcriptase
inhibitor (NNRTI) efavirenz, which were added at day 6 postinfection. Under these
conditions, no expansion of GFP� cells in the resveratrol- or pterostilbene-treated
populations was seen, indicating that the increase in productive infection observed in
Fig. 7B was not the result of latency reversal but, rather, was the result of de novo
replication in activated T cells of the few viruses that escaped initial inhibition (Fig. 7C
and S3B).

The effective concentrations of resveratrol and pterostilbene in resting T cells
are lowered by TDF. It has been demonstrated previously that resveratrol synergizes
with the NRTI to inhibit HIV-1 infection (14, 18). Therefore, we investigated whether
tenofovir disoproxil fumarate (TDF) or other NRTIs (AZT, FTC, and abacavir [ABC])
enhance the effectiveness of resveratrol and pterostilbene in resting CD4 T cells. We
performed titrations of resveratrol or pterostilbene on infected resting CD4 T cells
together in the background of a fixed concentration of each NRTI. The concentrations
of NRTIs chosen provided �50% inhibition (Fig. S4) to reveal any synergistic interaction
with the stilbenoids. The 50% inhibitory concentration (IC50) and IC90 values of each
stilbenoid with and without an NRTI were calculated by nonlinear regression curve
fitting after normalization of the antiviral effects of each NRTI as 0% inhibition. We
observed that TDF, an analog of AMP, enhanced the antiviral activity of resveratrol by
reducing the normalized IC50 by 41% (P � 0.003) and the normalized IC90 by 35.2% (P �
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0.30) (Fig. 8A). ABC, a guanine analog, reduced the normalized IC50 of resveratrol by
29% (P � 0.047), but the reduction of the IC90 was not statistically significant. The
cytosine analog FTC slightly reduced the IC50 and IC90 of resveratrol, but these
reductions were not statistically significant (P � 0.05), while the addition of the
thymidine analog AZT produced a small but nevertheless statistically significant in-
crease in the normalized IC50 of resveratrol (26% increase; P � 0.014).

DISCUSSION

Our study revisits the interaction between stilbenoids and HIV-1 to report their
potent anti-HIV activity in primary resting CD4 T cells. This is the first study to
demonstrate the nearly complete inhibition of HIV-1 infection by these compounds and
to do so in a cell type that is the most abundant early target of infection in vivo. Both
resveratrol and the related stilbenoid pterostilbene inhibited the generation of reverse
transcripts following HIV-1 infection, consistent with the known ability of resveratrol to
inhibit ribonucleotide reductase (20). This inhibition was completely reversed using
exogenous deoxynucleosides and the SIV Vpx protein, confirming that these com-
pounds acted via a reduction in dNTP levels. Host cell dNTPs are required for generation
of the viral DNA by HIV-1 reverse transcriptase as well as for DNA repair during viral
DNA integration (69, 70). Unlike activated T cells, which have high levels of dNTPs in
preparation for cell replication, resting CD4 T cells maintain much lower dNTP levels
(50, 68). As a result, HIV-1 infection of resting CD4 T cells is more vulnerable to
disturbance of cellular dNTPs by pharmacologic means.

Resveratrol and, presumably, pterostilbene target cellular pathways other than the
RNR pathway (3, 4, 71–77). Pterostilbene can inhibit HIV-1 integrase in vitro and partially
inhibit HIV-1 infection of a transformed fibroblastic cell line, 293T (19, 78). Most
prominent among the known resveratrol and pterostilbene targets is activation of
Sirtuin 1 (SIRT1), an NAD�-dependent deacetylase (79). Resveratrol increases SIRT1
activity apparently through multiple mechanisms, including induction of SIRT1 tran-
scription (72, 74, 80, 81). Sirtuins have been reported to have broad antiviral activity
against viruses other than HIV but not via RNR inhibition (82). SIRT1 deacetylation of the
HIV-1 transactivator Tat is required for its recycling back to the HIV-1 promoter after
each cycle of transcriptional activation (83). Thus, inhibition or overactivation of SIRT1
could disturb this cycle, leading to inhibition of HIV-1 replication. Consistent with this,
resveratrol inhibits HIV-1 expression in a HeLa cell line containing an integrated HIV-1
promoter-reporter module via the activation of SIRT1 (25).
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The concentrations of resveratrol and pterostilbene used to achieve half-maximum
inhibition of HIV-1 integration (78) and Tat transactivation (25) (47.5 �M and 50 �M,
respectively) were up to 10 times higher than the concentration that we found
completely inhibited HIV-1 in resting CD4 T cells (5 �M). Indeed, Fontecave et al.
showed that 10 �M resveratrol can completely destroy the catalytic tyrosyl radical in a
biochemical assay (20), and this concentration closely matched the IC90 of resveratrol
in our model. These factors suggest that the anti-reverse transcription effect of the
stilbenoids is potentially more important in resting T cells than SIRT activation or
integrase inhibition. Indeed, the non-reverse transcription-targeting effects of resvera-
trol and pterostilbene were revealed only when the drugs were added at day 2
postinfection, after reverse transcription was largely completed.

In the body, most of the HIV-1 output during chronic infection comes from activated
and proliferating CD4 T cells (84, 85); however, during acute SIV infection, it has been
suggested that resting CD4 T cells provide the majority of virus output (37). Activated
CD4 T cells are substantially more permissive to infection than resting CD4 T cells
derived from peripheral blood. Hence the majority of studies on HIV-1 have been
performed using primary activated CD4 T cells or transformed cell lines. On the other
hand, the lentivirus genera of retroviruses are specifically adapted to replicate in
nonproliferating cells, such as resting T cells and postmitotic macrophages. They
achieve this through the presence of several genes that counteract antiviral compo-
nents that are most active in resting or postmitotic cells, such as the HIV-2/SIV Vpx
protein, which counteracts cellular SAMHD1 degradation of dNTPs (86, 87). Reduction
of dNTP levels can be a strategy to inhibit retrovirus and DNA virus infection (50, 88).
Importantly, for the present study, the HIV-1 reverse transcriptase has evolved to
efficiently synthesize viral DNA at low dNTP levels and has a lower Km for dNTPs than
the reverse transcriptase from oncoretroviruses (88). On the basis of the ability of
resting T cells to be productively infected, SAMHD1 fails to lower dNTP levels to below
those required for RT to function, though its kinetics are markedly decreased; thus, the
combination of SAMHD1 and inhibition of RNR is required to lower the amount of
dNTPs to a level that RT is unable to function at all. A recent paper on Vpx has
suggested that Vpx additionally enhances HIV infection by an SAMHD1/dNTP-
independent mechanism (89). While this additional mechanism may be operating in
our system, the restoration of dNTP levels by Vpx would appear to be necessary to
overcome resveratrol and pterostilbene inhibition.

Early studies utilizing quiescent peripheral blood CD4 T cells suggested that HIV-1
is unable to complete its replication cycle in resting T cells (90); however, later work has
shown that while the kinetics of several events, such as reverse transcription and gene
expression, are reduced in these cells, they do support productive infection (51). The
great majority of HIV-1 replication does not occur in the blood but, rather, occurs in
lymphoid and mucosal tissues, areas where cytokines, chemokines, and stromal cells
provide support for infection of resting T cells (36, 48, 57, 63, 65, 91). Among these, both
IL-4, which enhances HIV-1 replication in lymphoid tissues, and IL-7, which enhances
HIV-1 replication in mucosal tissues, block HIV-1-induced apoptosis soon after infection
of resting T cells (49). As stated above, much work has demonstrated that infection of
resting CD4 T cells occurs early following transmission (27–29) as well as during all
stages of HIV-1 infection (26). In particular, the ability of HIV-1 to replicate in nonpro-
liferating host cells is vital to its successful spread from the genital mucosa to the rest
of the body (29, 92). Interruption of resting CD4 T cell HIV-1 infection by resveratrol or
pterostilbene at the time of exposure or soon thereafter might reduce the rate of
successful transmission.

The development of topical microbicides (TM) to protect against sexual mucosal
transmission is a priority in HIV research. In the absence of a vaccine, the promise of
anti-HIV TM is to allow receptive sexual partners, especially women in developing
countries, greater control over their protection from HIV and other sexually transmitted
diseases (93, 94). A cervicovaginally applied gel has received the most attention thus
far, and intravaginal rings and films dispensing antivirals over extended periods are also
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in development (95, 96). The formulations of TM remain a difficult problem owing to
issues such as localized irritation and inflammation-promoting activities (97).

The CAPRISA 004 clinical trial of a cervicovaginally applied gel containing 1%
tenofovir obtained 39% protection from heterosexual transmission but, encouragingly,
61% protection in the most adherent women (98). Inhibition of HSV-2 transmission was
observed to be similar to that of HIV-1 protection in this trial, and a subsequent TFV TM
trial (99). Additional studies failed to obtain protection against HIV-1 (94, 100), likely
explained by poor adherence, while the recent VOICE trial obtained 14.5% protection,
again, with suboptimal adherence (99). It might be useful to include within topical
microbicide formulations agents that increase the potency of the primary antiviral
compound and that also have antiviral activities of their own against HIV and other
sexually transmitted viruses, such as HSV, that increase the transmission risk (101–103).
Anti-inflammatory activity could additionally be useful to decrease localized inflamma-
tion and the attendant increased transmission risk. Resveratrol or pterostilbene might
meet the requirements of an adjuvant to boost TM efficacy in combination with
standard antiviral compounds, including NNRTIs, with which RES and PTE have additive
or synergistic activity in cells, such as activated T cells. Indeed, in mice, topical
resveratrol has been shown to block vaginal HSV-1 transmission (13) presumably via
inhibition of ribonucleotide reductase (104). Both resveratrol and pterostilbene have
anti-inflammatory properties (4, 105, 106), including decreased T cell activation (74)
related to SIRT1 activation (75, 107). Promotion of T cell quiescence would both reduce
the inherent susceptibility to infection and promote sensitivity to the infection block-
ade by RNR inhibition. An important consideration in TM use is to test RES and PTE in
non-T cell types, such as macrophages, dendritic cells, and Langerhans cells, which are
also early targets of immunodeficiency virus infection of mucosal tissues. Partial inhi-
bition of macrophage infection has been reported, and the potential to synergize with
NNRTIs will need to be evaluated in diverse cell types.

The manipulation of the cellular dNTP pool for anti-HIV purposes has been previ-
ously attempted using systemic hydroxyurea (50, 108); however, hydroxyurea can
potentiate the toxicity of some NRTIs, such as didanosine, and caused serious systemic
adverse effects in vivo (109). Both resveratrol and pterostilbene are sold as nutritional
supplements, and no in vivo toxicity even at high doses has been observed in
controlled studies (110–112). While pterostilbene is more bioavailable than resveratrol
and has a longer half-life in vivo, topical use of resveratrol might avoid the problem of
low bioavailability (113). The results of the studies presented here support the concept
of using resveratrol or pterostilbene as an adjuvant to improve inhibition of resting CD4
T cell infection within a topical preexposure prophylaxis strategy.

MATERIALS AND METHODS
Viruses. The Env-defective NLENG1-ES-IRES (G1ESI) and replication-competent NLENG1-IRES (G1I)

HIV-1 GFP reporter viruses have been described previously (48, 57). These constructs utilize the HIV-1
NL4-3 backbone and its native CXCR4-tropic envelope protein. Virus-like particles (VLPs) delivering
SIVmac239 Vpx to cells have also been described previously (49). Infectious viruses were generated by
transfection of 293T cells with a plasmid expressing the reporter virus (G1I) or cotransfection with a
plasmid expressing an env-defective reporter virus (G1ESI) with the plasmid expressing the CXCR4-tropic
HIV-1 NL4-3 envelope, as described previously (48). Virus stocks were filtered through a 0.45-�m-pore-
size filter and treated with Benzonase nuclease (25 U/ml; EMD Millipore Biosciences) to remove residual
plasmid remaining from the transfections (48). Virus stock titers were routinely determined by TaqMan
RT-qPCR for HIV-1 RNA and normalized as previously described (48).

Cells, reagents, and infections. Peripheral blood mononuclear cells (PBMCs) were purified from
HIV-1-negative adults and were purchased as deidentified buffy coats from the New York Blood Center.
Cells of the Jurkat cell line (clone E6) were obtained from the American Type Culture Collection (ATCC).
Isolation and culture of primary CD4 T cells, IL-4 treatment, eFluor670 staining, and infection by
spinoculation have been described previously (48, 57). Infections of PHA-L (3 �g/ml; Sigma-Aldrich)-
activated CD4 T cells and Jurkat cells were also performed by spinoculation but were performed for only
30 min instead of the 2 h used for resting T cells. For experiments utilizing Vpx VLPs, at 1 day prior to
infection with G1ESI, resting CD4 T cells were spinoculated with VLPs delivering Vpx or VLPs devoid of
Vpx for 2 h.

After spinoculation, infected cells were washed once and then plated at 40,000 cells per well in a
96-well plate. These cells were incubated with the treatment compounds for 5 days, and then GFP
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expression was analyzed by flow cytometry, unless otherwise stated. Resveratrol (RES) was obtained from
Santa Cruz Biotechnology. Pterostilbene (PTE) was from Cayman Chemical. Polydatin (POLY) and picea-
tannol (PIC) were from Abcam. Isorhapontigenin (ISOR) and the four deoxynucleosides (dN) were from
Sigma-Aldrich. All small-molecule drugs as well as dN were added immediately after spinoculation or at
the time points indicated above and at the doses indicated in the figure legends. The HIV-1 protease
inhibitor indinavir (IDV) was dissolved in water and used at 2 �M, while the NNRTI efavirenz (EFV) was
dissolved in DMSO and used at 1 �g/ml. The nucleoside/nucleotide reverse transcriptase inhibitors
zidovudine (AZT), tenofovir disoproxil fumarate (TDF), emtricitabine (FTC), and abacavir (ABC) were used
at suboptimal concentrations (at or below the IC50s) of 18 �M, 120 pM, 16 nM, and 12 nM, respectively,
in combination with resveratrol or pterostilbene to find potential synergistic interactions between the
two families of compounds. All antiretroviral compounds were obtained from the NIH AIDS Research and
Reference Reagent Program.

Flow cytometry and IC50 and IC90 analysis. Flow cytometry was performed in a FACSort flow
cytometer (Becton-Dickinson) upgraded to 3 lasers and 5 color channels as previously described (48).
Flow cytometry data were analyzed using FlowJo software. Percent inhibition was calculated by dividing
the percentage of GFP� cells in each treatment group by the percentage of GFP� cells in the appropriate
DMSO control. All analyses were carried out on live cells using a forward and side scatter gate in FlowJo
software. The IC50 was calculated using a nonlinear regression curve fit of the dose-response curves of
each compound or treatment condition in GraphPad Prism software (version 5.0). The IC90 was deter-
mined using the IC50 and Hill slope factor from the curve fit in the online GraphPad calculator for
effective concentration (http://www.graphpad.com/quickcalcs/Ecanything1/).

PCR quantification of HIV-1 DNA. Cellular DNA extraction, early HIV reverse transcript PCR, late
(full-length) HIV-RT transcript HIV PCR, 2-LTR HIV PCR, and integration Alu PCR were performed using the
primers and TaqMan probes described previously (48, 57, 114). Briefly, cell DNA was extracted using a
DNeasy blood and tissue kit (Qiagen). Total and 2-LTR HIV-1 DNA was quantified by qPCR using the USB
VeriQuest probe qPCR master mix (Affymetrix). Integrated HIV-1 DNA was quantified by Alu PCR as
described previously (48) using the QuantiTect Probe PCR master mix (Qiagen). Early viral reverse
transcripts (R-U5 of the long terminal repeat [LTR]) were quantified using primers ZXF forward and AA55
reverse and the ZXF probe, while full-length viral DNA (LTR-gag) was quantified using primers ZXF
forward and ZXF reverse and the ZXF probe (48, 57, 114).

Statistical analysis. The statistical significance of the difference between different experimental
conditions was calculated using the unpaired Student’s t test (two-tailed) with an alpha value of 0.05.
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